

MATHEMATICS

HIGHER LEVEL
PAPER 3 - SETS, RELATIONS AND GROUPS
Tuesday 19 November 2013 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics SL information booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 14]

Consider the following functions

$$
\begin{aligned}
& f:] 1,+\infty\left[\rightarrow \mathbb{R}^{+} \text {where } f(x)=(x-1)(x+2)\right. \\
& g: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R} \text { where } g(x, y)=(\sin (x+y), x+y) \\
& h: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R} \text { where } h(x, y)=(x+3 y, 2 x+y)
\end{aligned}
$$

(a) Show that f is bijective.
(b) Determine, with reasons, whether
(i) $\quad g$ is injective;
(ii) g is surjective.
(c) Find an expression for $h^{-1}(x, y)$ and hence justify that h has an inverse function.
2. [Maximum mark: 11]
(a) Let G be a group of order 12 with identity element e.

Let $a \in G$ such that $a^{6} \neq e$ and $a^{4} \neq e$.
(i) Prove that G is cyclic and state two of its generators.
(ii) Let H be the subgroup generated by a^{4}. Construct a Cayley table for H.
(b) State, with a reason, whether or not it is necessary that a group is cyclic given that all its proper subgroups are cyclic.
3. [Maximum mark: 15]
(a) Let A be the set of all 3×3 matrices of the form $\left(\begin{array}{ccc}a & b & 0 \\ -b & a & 0 \\ 0 & 0 & 1\end{array}\right)$, where a and b are real numbers, and $a^{2}+b^{2} \neq 0$.
(i) Show that $\left(\begin{array}{ccc}a & b & 0 \\ -b & a & 0 \\ 0 & 0 & 1\end{array}\right)^{-1}=\frac{1}{a^{2}+b^{2}}\left(\begin{array}{ccc}a & -b & 0 \\ b & a & 0 \\ 0 & 0 & a^{2}+b^{2}\end{array}\right), a^{2}+b^{2} \neq 0$.
(ii) Hence prove that (A, \times) is a group where \times denotes matrix multiplication. (It may be assumed that matrix multiplication is associative).
(b) Let B be the set of all 3×3 matrices of the form $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c & -d \\ 0 & d & c\end{array}\right)$, where c and d are real numbers, and $c^{2}+d^{2} \neq 0$.

Prove that the group (B, \times) is isomorphic to the group (A, \times).
4. [Maximum mark: 9]

Let $(H, *)$ be a subgroup of the group $(G, *)$.
Consider the relation R defined in G by $x R y$ if and only if $y^{-1} * x \in H$.
(a) Show that R is an equivalence relation on G.
(b) Determine the equivalence class containing the identity element.
5. [Maximum mark: 11]
(a) Given a set U, and two of its subsets A and B, prove that

$$
(A \backslash B) \cup(B \backslash A)=(A \cup B) \backslash(A \cap B), \text { where } A \backslash B=A \cap B^{\prime}
$$

(b) Let $S=\{A, B, C, D\}$ where $A=\varnothing, B=\{0\}, C=\{0,1\}$ and $D=\{0,1,2\}$.

State, with reasons, whether or not each of the following statements is true.
(i) The operation \backslash is closed in S.
(ii) The operation \cap has an identity element in S but not all elements have an inverse.
(iii) Given $Y \in S$, the equation $X \cup Y=Y$ always has a unique solution for X in S. [7]

